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The exact calculation of the reduced BCS model quantum partition function 
(QPF) in the thermodynamic limit is carried out by the path integration method. 
The expression for the QPF and the phase transition temperature 7",. in the 
regular phase coincide with the results of Bogolyubov. In the nonregular phase 
a temperature singularity appears in the expression for the QPF: the QPF diverges 
in the region of temperatures Tc which are smaller than some critical temperature 
T*, and it turns out that in all cases T* > T c and the difference T* - T c is not 
small. The interpretation of the temperature T* is given. 

Recent ly  ( Izmai lov  and  Kessel, 1989a-c )  the exact calculat ion o f  the 
reduced BCS model  Q P F  was carried out  by the path integrat ion method  
over a Grassman  manifold.  These results revealed some interesting charac-  
teristics o f  the BCS model  in the nonregular  phase. There is another  
expression for  the QPF,  obta ined  in the t he rmodynamic  limit by another  
me thod  (Popov,  1981). One  o f  the main purposes  o f  this paper  is to reveal 
the reasons for  this difference. It turns out that  the results o f  Popov  (1981) 
can be ob ta ined  within our  path integration app roach  when a definite basis 
GCS-2  o f  general ized coheren t  states (GCS)  is used in order  to construct  
the covar iant  symbol  o f  the act ion operator .  However ,  the GCS-2  basis does 
not  satisfy some group- theore t ic  requirements  due to the algebraic structure 
o f  the set o f  the opera tors  f rom which the BCS model  Hami l ton ian  is 
constructed.  The use o f  another  basis, GCS-1,  devoid o f  this defect, leads 
to the results o f  Izmai lov and  Kessel (1989a-c )  for the QPF.  It is shown 
that  the appeal  to the per turbat ion  theory does not  allow us to make the 
choice between the different GCS  bases. QPF  is the S-matr ix  with the 
imaginary  time parameter  i~', ~ [0, hfl] ,  and every term of  the S-matr ix 
per turbat ion  theory  (f rom the second one, which is propor t iona l  to the 
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interaction constant squared) contains an arbitrariness in the form of addi- 
tional integrals over arbitrary quasilocal operators. The source of this 
arbitrariness is in the uncertainty of the chronological operator product 
when the time variables coincide (Bogolyubov and Shirkov, 1959). So, due 
to this arbitrariness, it is possible to restore the results for the QPF obtained 
both in the GCS-1 and GCS-2 bases. 

In this paper all calculations are carried out with a Hamiltonian that 
generalizes the Hamiltonian used in Izmailov and Kessel (1989a-c) in two 
respects. First, the constant of the four-fermion interaction potential is 
replaced by a separable potential of arbitrary type. Second, source terms 
of the Cooper pairs are added to the Hamiltonian of the BCS model 
(Bogolyubov, 1972). Thus, it is possible to obtain a united expression of 
the QPF for both the regular and the nonregular phases. In the limit cases, 
the QPF of our paper turns into the well-known result for the regular phase 
(Bogolyubov, 1972) and into our result (Izmailov and Kessel, 1989a-c) for 
the nonregular phase. 

1. PATH INTEGRATION FORMALISM FOR T H E  

R E D U C E D  B C S  M O D E L  

The quantum partition function of the system with the Hamiltonian H 
can be expressed in the thermodynamic limit with the help of path integra- 
tion in the following way (Berezin, 1976; Klauder, 1979; Kuratsuji and 
Suzuki, 1980): 

Z(/3) ~ Tr e -t3n = Z  I d/~ e aC/~ (1) 

where the trace is taken over the states of the Hilbert space Y( which 
corresponds to the Hamiltonian H, 13 = 1/kT (T is a temperature), Z is a 
normalization constant, and d# is the Lebesgue measure invariant under 
the canonical transformations and defined on the space Y(,. of the covariant 
symbols of  the operators which form the Hamiltonian H (the space YCc 
coincides with the classical phase space of the problem under consideration). 
The functional A,., defined on space ~c, is the covariant symbol of the 
action operator A. In general, Ac can be represented in the fo rm 

Io Ac = Ac, kin -- d~'Hc(z) (2) 

Here At.kin is the kinematic part of the action operator covariant symbol. 
H,.(~') is the covariant symbol of the Hamiltonian H(T) in the Heisenberg 
representation. Generally speaking, the so-called extraintegral terms 
(Berezin, 1976; Vasil'ev, 1976) can appear side by side with the action 
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operator covariant symbol Ac in the exponent index of the rhs of expression 
(1). However, they become zero if the integration in the space Ygc is carried 
out over the closed trajectories (antiperiodic ones) that we shall deal with 
below. Let us note that sometimes it is more convenient to use the discrete 
representation for the integral over the variable r (Berezin, 1976; Glimm 
and Jaffe, 1981; Vasil'ev, 1976): 

fo ~ h/3 
d'r f (r)= lim Z-;--~ E f ( r )  (3) 

N ~ e o  I ~ T  z 

by dividing the interval of integration into N~ indivisible equal parts. Thus, 
it is possible to present the spaces ~ and ~,, in the form of direct products: 

~ = H |  ~,, = 1]| ~{~(r) (4) 
T T 

The invariant integration measure d/z can be represented in the analogous 
form 

a/~: 1]| a/~(~-) (5) 
1- 

I n  the problem under consideration the Hamiltonian H is the Hamil- 
tonian of the well-known reduced BCS model (Bogolyubov, 1972): 

H = Ho + V, + V2 (6) 

/40 = ~  Y~ tkn~(k, O) 
k o- 

n,,(k, 0) = ~+(k,  0)~,T(k, 0) 

V, = --A E h (k)[A(k, O)+ A+(k, 0)] 
kl  

A(k, 0) = ~ - , / 2 ( - k ,  0)~,/2(k, 0) 

U 
V2 = - - -  2 Y h (k,)A (k2)A*(k,, 0)A(k~, 0) 

N k I k 2 

where ~S(k,  r) and q%(k, r) are the Fermi creation and annihilation field 
operators of the conduction electron with momentum hk, spin projection 
on the quantization axis ~r = +1/2, and kinetic energy tk = ( h k ) Z / 2 M -  tv, 
which is counted from the Fermi energy tF at the time moment r; M is the 
electron mass; N is the number of elementary cells in the crystal; A is some 
positive energetic constant, which has the sense of the gap in the electron 
spectrum when these electrons are in the superconducting phase; U is the 
constant s-wave part of the electron-electron interaction potential; h(k) is 
the form factor, which possesses the following property: h ( - k ) = - A  (k). 
Thus, the Hamiltonian (6) generalizes the energy operator investigated 
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(Izmailov and Kessel, 1989a-c) and turns into it when A = 0 and A (k) = 1 .  2 

The operator I/2 is the source of the Cooper pairs and its presence in the 
total Hamiltonian H violates the symmetry of the physical system under 
consideration: the operator H loses its global gauge invariance and the 
particle number is no longer a constant of motion. The introduction of the 
additional quantum number hk makes it possible to construct the following 
more detailed direct products for the spaces ~(z)  and ~e(r), 

gg(z) = 1~| ~(k,  ~), ~c(~') = 1]| ~c(k, z) (7) 
k k 

and for the measure dtz(z), 

d~(~) = H |  ~) (8) 
k 

In order to derive the reduced BCS model action functional Ac it is 
necessary to find the covariant symbols ~*~(k, z) and ~c,~(k, r) of the field 
operators ~+(k, ~') and ~ ( k ,  z). By definition, these symbols are the 
diagonal matrix elements of the corresponding operators in the basis of 
the space ~(k ,  ~') generalized coherent states -[~:, ~c(k, ~')), where ~: is a 
complex numerical parameter. The Fermi field GCS possess the following 
properties. They are the eigenfunctions of the field annihilation operators: 

*~(k,  ~)]~; *,.(k, z)> =*,;~(k,  T)ls~; ~Pc(k, r)> (9) 

The set of these functions is overcomplete and thus it is not orthonormal: 

f d/~(k, z)<*,.(k, ~); ~/1r ~c(k, z)) = F ( ~ -  7?) # (10) 0 

where F(0) -- 1. Moreover, for s = s the following resolution of unity must 
exist: 

f d~(k, z)l~t; %(k ,  z))(%.(k, z); ~jl =re(k, z) (11) 

where ~(k, ~') is the unity operator, which acts in the space ~c(k, ~'). The 
integrals in expressions (10) and (11) are functional ones over the space of 
functions which take their values in the Grassmann algebra. The invariant 
Lebesque measure of such an integration is chosen in the form (Berezin, 
1976; Ohnuki and Kashiwa, 1978; Vasil'ev, 1976) 

dtz(k, z) =1] d~,~(k, z) d*~.~(k, z) (12) 
o- 

Usually, in accordance with these requirements, the GCS for the 
fermion system are taken in the following form (Ohnuki and Kashiwa, 

2The energy operator considered in Izmailov and Kessel (1989a-c) completely coincides with 
the Hamiltonian of the Thirring model (Thirring, 1968). 
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1978); Perelomov, 1986): 

I~:, %,(k, r))2 -- T~,2(k, r)10(k, r)) (13) 

~.2(k, r ) =  exp{-sc[~*,/2(k, r)~+/2(k, r )+~*-1 /2 ( -k ,  r)~+-l/z(-k, 7.)]} 

where 10(k, r)) is the eigenvector of the field annihilation operators 
[the vacuum vector of the space Y((k, r)], which corresponds to the zero 
eigenvalue. 

However, the GCS-2 of the fermion system taken in the form (13) are 
not quite satisfactory from the group theory point of view. The fact is that 
the operators ~(k ,  r) must form an irreducible representation of the factor 
algebra ,~ = ~//~/, of the model under consideration. For the reduced BCS 
model, the total Lie superalgebra of the operators from which the model 
Hamiltonian H is constructed is 

M =IF] I]| +k, r); ~,+/2(k, 7.); ~,/2(k, r); q~+-,/2(-k, r); q~-,/2(-k, r); 
k o- 

n,/2(k, r); n_~/z(-k, r); A(k, r); A+(k, r)} (14) 

and the vacuum state [0)=I]kl-I~ | r)) stability Lie superalgebra ~ 
(~r = AI0)) consists of the following basis elements: 

~.~ = H  II |  7.); ~',/2(k, 7.); ~-1/2(-k,  7.); 
k o- 

nl/2(k, r); n-1/2(-k, r); A(k, r)} (15) 

Thus, the factor algebra ~ / o f  the model under consideration is 

= I] [I| r); q~+,/2(-k, r); A+(k, 7.)} (16) 
k r 

and hence, in contrast to expression (13), the irreducible representation 
operator T e ( k  , r )  must be expressed with the help of the operator A+(k, r), 
too. Taking into account all the above properties of the fermion coherent 
states (9)-(11), one must choose the irreducible representation operator 
Tr r) in the form 

T~.,(k, r ) =  Z~(k, 7.){1- ~[~2"~1/2(k , 7")~!~r,+/2(k, 7") 

+,I,* ,/~(-k, 7.)'I,_+,/~(-k, 7.)] 

+--~ [A,(k, r )+  A*(k, r)]A+(k, 7.)} (17) 

Z~(k, 7.) = 1 1~12 - 2 [n,.,~/2(k, r ) + n ~ . _ ~ / 2 ( - k ,  r)] 

+ I~1~ .~.,/2(k, 7.) . , ,_, /2(-k,  "~) 
4 

n~.,~(k, r)= ~ ( k ,  r)~.~(k, r) 
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At(k, ~') = ~c-l/2(--k, ~')~c.,/2(k, ~') 

where the implementation of property (11) is secured by the condition 
s ~= ~r = exp(+icr/8). In the GCS-1 basis, which is defined by the relation 

I~, ~t,~.(k, r)) ,  = ~ , l ( k ,  r)]0(k,  ~')) (18) 

the covariant symbol Ac of the reduced BCS model action operator takes 
the following form: 

1 ~ A t ( z )  A'-s'= lim ~7  L ~ (19) 
h N ~ o c  

A~(~') 
=E  {~*,/~(k, z)W,/2(k, z)~,l/2(k, z) 

h k 

+ ~ * - , / 2 ( - k ,  z )W(-k ,  z)~c- , /2(-k ,  z) 

+ A/3A (k)[A~(k, ~-)+ A*(k, z)]} 

U/3 
+ 2 N  ~ y'k~ A (k,)A (k2)[A~(k,, z) +A*(kl,  z)] 

x [At(k2, r) +A*(k2, z)] 

W(k, 'r)--= h [3 O "r - fl t k 

where symbol 0, designates the continuous derivative in the interval 
[ ( r  - 1) hfl/N% .rhfl/N.]. 

2. CALCULATION OF THE REDUCED BCS MODEL 
QUANTUM PARTITION FUNCTION 

In the case when the action covariant symbol A, has the form (19), 
expression (1) for the reduced BCS model quantum partition function in 
the thermodynamic limit can be represented in the following way: 

Z~(f l )  = Sp e -~H = Z  lim lira lim det(1)/3(e) (20) 
N~oz" Nr~co e ~ 0  

B(~) =Z Z B(~, ~)~(~, ~-(~)) 
7 r (e)  

where 
operator: 

B ( e ,  z ) = ( z [ B ( ' r ,  z(e))[z(e)) 

l i m ~ o z ( e ) = z  and B(e, z) is the kernel of the differentiation 

(21) 
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A~( ,r, ,r ( e ) ) 
h 

~] {',I~u2(k , 7) W(k, ~')W.:/2(k, z) 
k 

+~*-1 /2 ( -k ,  7 (e ) )W(-k ,  7(e))~/ ._u2(-k  , 7(e)) 

+A/~h(k)[Ac(k;  n 7 ( e ) ) + A ~ ( k ;  n z (e ) ) ] }  

2~-~Z A(k,)A(k2)[Ac(k,; z(e))+A*(k,; "r(e))] z, "r, 
k2 

• [A . (k2 ;  "r, " r (e) )+  A*(k=;  ~-, , r (e)) l  (22) 

Ac(k;  ,r, , r (~ ) )= 'k I ) ' c_ i /2 ( -k  , ,r)'kl'tt\I/:(k, T) 

The set of the projection operators {/3(,r, ,r')} entering in expression (20) 
forms the Okubo basis in the space of the square matrix algebra Mat(N~, C) 
and possesses the property 

/3(z, z')/~(7, y') = 6..,.,fi(,r, y') (23) 

Here det(~).~ is the notation for the matrix ..Y determinant in the basis 
{/3(,r, ,r')}. Bra (,r[ and ket I,r) vectors of this basis can be represented in the 
form 

1 ~o,, 1 
(,r] = ~ Y ' v  lv,r o~ e /~,~, [ , r ) = ~ r r ~  e-i'~ (24) 

where t o=v r (2n+ l ) / h /3  ( n = O , + l , •  for the problems in 
which the path integration is carried out over the Grassmann variables; tot 
is some fixed frequency, from which all the other frequencies are counted; 
{/J~o.,,} is the dual Okubo basis, which is the Fourier image of the basis 
{:(,r, ,r')}: 

fi(,r, ,r')=--~ ~ ~. e "~'~-'''=') P~m' (25) 

where the frequencies 1~ can take either the values to = ~(2n + 1)/hfl or the 
values u = 27rn/h~. 

Let us rewrite the expression for exp[A,(,r, ,r(e))/h] in the following 
way: 

exp = exp 

A,.,('r, "r(e)) 1 
- S~ ~ {xIl'~l/2(k' ~') W(k, T)xir..,/2(k, ~') 

fi  

+ T'*_,/2(-k, z ( e ) ) W ( - k ,  7"(e))W,.:,/~_(-k, "r(e)) 

+ AflA (k)[A,(k; ~-, ~-(e)) + A*(k; ,r, ,r(e))]} 
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Ac,2( 7, 7 ( E ) ,  
~,z,,_(~ iq~('c) "~/~-zYz~_~ A(k)EAc(k; % r  % ~'(e))] 

V N N ~ 7  

Here (. �9 ")o,~(T) is the average over the vacuum of some Bose field ~(z), 
which possesses the following properties: 

~o(~) = ~ - 0 - ) +  ~+(T), [~-(~-),  ~ +0-')]  = a,,,, (27) 

For the subsequent calculations it will be necessary to know the expression 
for the vacuum average value of the operator ~ ' ( z ) :  

(2m)! 
(q~"(r))o,~(.) = 6.,2m 2~m! (28) 

Now there are only quadratic forms of the Fermi operator covariant symbols 
in the exponent index of expression (26). 

Making the direct calculation of the path integral (21), one can obtain 
the explicit expression for the differentiation operator B0", z(e)): 

N-,. (2m+2n)!  ( Afl)2"( UflN~/2N) " 
B(z, z(e))=.l=o .=oY' ( 2 n ) ! m ! [ ( m + n ) I ( N - m - n ) ! ]  2 

x Z . . .  Z E " "  E 
klk~ km+.km+.  Plql PN--m--nqN--m--n 

X "~'kl'"km+nPl'"PN-m-n ~'kl"'km+nql'"qN-m-" 
~k~"'k.'~+,,pl""PN_m_.~ki'"k,.,+,~ql'"qN_m_,) 

m+n N--rn--n 

x IF[ h(kj)h(k~) H W(pe, T) W(qe, 'r(e)) 
j= l  c=1 

(29) 

where 

kl"'k N 
Ekl-..k/~ 

is the generalized Kronecker tensor of rank N. Result (28) was used in 
order to obtain expression (29). Let us take into account now the properties 
of the generalized Kronecker tensors: 

k I " "kp  
Z " * " Z Rkl '"kPkp+l" 'kN = ( N - p ) [  ekl k; (30)  kl . . .kpkp+l  .--k N 

kt,+l kN 

P P kl '"k p kl" 'k p 17 �9 "" ek,...k~ H Zk, (31) 
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where Zk is the ordinary non-Grassmann function of variable k and p = 
m + n. Thus, the operator B ( r ,  ~-(e) )  can be represented in the form 

B(r, r(e)) = D('r, r(e))F(r, r(e)) (32) 

D(r, r(e)) = l ]  W(k, r ) W ( - k ,  r(e)) 
k 

/,4 N - m  (2m+ 2n)~ (A/3)E'( uf lNr/  N) m 
F ( % r ( e ) ) =  ~] E 

,.=o .=o (2n) !m!(m+n)!  

where 

kl'"kn I~[ V(kj;  T~ ~(~,)) 
X E ' ' "  E Ekl...kn 

k I k n j = l  

n+m 
x Y. . . .  • e k,,+,'k ...... ~ V(k,;"r,r(e)) 

kn+ 1 ." . k , +  m 
kn+ I k . +  m 1= 1 

( k l , . . . , k ,  # kn+ l , . . - , kn+m)  

V(k;  r, r (e ) )  = A2(k) W - ' ( k ,  ~-) w - l ( - k ,  r (e ) )  

The introduction of the auxiliary differentiation operator 

N N (211+212)! d tl d t2 
G(bl,b2) = Z ~o(211)!(212)!(ll+12)VdbqdbJ~2= 1 ~ (33) 

11=0 

makes it possible to obtain in the thermodynamic limit the following 
expression for the pseudodifferentiation operator F(r, r(e)): 

N N--m [ b l ( A f l ) 2 ]  n k , - - . k  

F(r, r(e))= lim lim lim G(b,, b2) Y~ E ~,' " " ~, ek,...k:: 
N ~ , x "  b l ~ 0  b 2 ~ 0  m = 0  n = 0  r / !  kt kn 

(2m)! [b2UfiN~ ]" 
• H V(k~; ~, ~(~)) ~ U Y V(k; ~, , (~) )  

j =  l k 
(kT~ k l , . . . , k ,  ) 

(34) 

Having used the representation 

�9 - - -  Z ( k ,  ~,  ~ - ( e  
k 

( k #  k l , . . - , k .  ) 

= H  lim e J ~ L( l+ak)V(k ; r , r ( e ) )  (35) 
j=l a k / ~ O  

one can derive in the thermodynamic l imit the operator B(% ~'(e)) in the 
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form: 

B(r, r(e))= lim lim lim G(bl, b2) 
N ~ c c  b l ~ 0  b 2 ~ 0  

x 1-[ lim { W(k, "r) W(-k ,  r(e))  + b~[Aflh (k)] 2 e-d/d%} 
k ak--) 0 

2 N Lk (1 + ak)V(k; z' 

In order to derive expression (36), the following summation formula was 
used: 

~, " X m = ( 1 - 4 X )  -'/2 , X e  [-�88188 (37) 
m = O  

It results from this that in our problem the QPF converges under the 
condition 

b2 2 UflN~ E (1 + ak)(z[ V(k; r, z(e))[r(e)) ~ [ -1 ,  1) 
N k 

(38) 

Insofar as it was implied above that the parameter b 2-) 0, this condition is 
practically satisfied in all cases. Taking into account that the introduction 
of this parameter was an auxiliary procedure and that the fulfilment of the 
same condition with b2-- 1 will be demanded in Section 3, it is natural to 
demand the fulfillment of condition (38) in the more rigid form which 
corresponds to b2-- 1. 

In the following stage of our calculations it is necessary to find the 
determinant (20) of the matrix /~(e). For this purpose one has to take 
into account that the operator V(k; z, ~-(e)) entering into expression (36) 
for the B(T, z(e)) is the pseudodifferential operator and the operator 
W(k, ~) W ( - k ,  r(e))  is the differential (the so-called eigenpseudodifferen- 
tial) one (Treves, 1982). The matrix elements of the above operators which 
are used for the calculation of the determinant (20) can be represented in 
the form 

(~'l w(k,  ~-) W(-k,  ~'(~))1~'(~)) 
= W(k, q ' )W(-k,  z(e))8~,~(~)= Y Fl(to) e i'~(~-~(€ (39) 

to 

(~'[ W-l(k,  ~ ' )w- l ( -k ,  "r(e))['r(e)) 

= W-~(k, r) W-~(-k,  r(e))8~,~(~) = Y. F:(~,) e '~(~-~(~)) (40) 
v 
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In the theory of Fourier integral operators, which deals with pseudodifferen- 
tial operators, it is shown that the symbol F l ( w )  of the differential operator 
W(k, ~-) W(-k ,  r(e)) can be found with the help of the formula 

Fl(to) =lim W(k, ~-)W(-k, ~(e)) ei~(~-'(~)) = (hflto)2+ ([3tk) 2 (41) 
e ~ 0  

and the symbol Fz(v) of the pseudodifferential operator 

W-l(k, r ) W - t ( - k ,  7(e)) 

can be found with the help of the formula 

F2(u) = N, lim e - ~ W - ~ ( k ,  z) W- l ( -k ,  r(e)) ei'~6~,~(~) 
e-+0 

1 
(42 ) 

[ ih[3 ( ~ - to) - [3 tk] ( ih[3to - [3 tk) 

In order to derive expression (42), it was taken into account that the 
pseudodifferential operator W-~(k, r) W-~(-k,  r(e)) can be considered as 
a differential operator on the compact open subset A, where 6~,~(~)(A) = 1 
(Treves, 1982). 

Substituting now expressions (39)-(40) into (36) and then into (20), it 
is possible to obtain the following expression for the QPF of the reduced 
BCS model: 

21(/3 ) = Z  lim [I lim lim G(b~ ,  b2) 
N ~ o O  r b l o 0  b 2 ~ 0  

• lim {(h[3to)2+([3tk)2+ b,[AflZ(k)] 2 e -d/d%} 
k a k ~ 0  

x 1 - b 2 - - - ~ - ~ ( l + a k ) R  k, t o - - ~ / j  (43) 

R k, t o -  ~- R(k, ~,) 

1 AZ(k) 
E ih[3 (~-to,)--[3tk](ihflto,- [3tk) 

= _A2(k ) th([3tk/2)  
ih[3 v - 2[3 t k 

In order to obtain the expression for the R ( k ,  v)  the following well-known 
formula was used: 

(44) 
~ i ~ [ 3 t o -  [3a 
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In the dual space of the Okubo basis, condition (38) takes the form 

b22~__~ k (l+ak)A2(k) th (r i tJ2)  e ( -1 ,  1] (45) 
ihriv - 2ritk 

Expression (39) is the final result of our exact calculation in the 
thermodynamic limit of the QPF for the reduced BCS model with the 
Hamiltonian in the form (6). 

3. S O M E  PROPERTIES OF THE R E D U C E D  BCS M O D E L  
QUANTUM PARTITION FUNCTION 

Let us carry out the analysis of expression (43) for the QPF in two 
limiting cases. 

1. U = 0. In this case the Hamiltonian (6) turns into the well-known 
approximation Hamiltonian of the BCS model, which is used for the 
description of the model in the regular phase, and expression (43) becomes 
the well-known exact result (Bogolyubov, 1972) for the QPF of the system 
with the Hamiltonian Ho+ Vs 

Z1 (fl)] u =o = Sp e -t~( H~ v,) = Z U II {(hriw)2 + (fitk)2 q_ [Aria (k)] 2} (46) 

The estimation of the critical temperature in the regular phase, made within 
the traditional assumption (Bogolyubov, 1972), is given by the expression 

T,. = To e - ' /~,  TD 2yhog________~o, A = p___U (47) 
7rk N 

where y is the Euler constant, wD is the Debye frequency for the definite 
crystal, and p is the density of the conduction electron states on the Fermi 
surface. 

2. ZX=0. In this case expression (39) becomes the result obtained 
(Izmailov and Kessel, 1989a-e) for the reduced QPF in the nonregular 
phase and in the thermodynamic limit: 

Zl(ri)lA:0: Sp e a~H~ lim Sp e-~'oFl(ri)  (48) 
N + c o  

Sp e -t3"~ = Z H H [(hriw) 2+ (ritk) 2] 
o2 k 

F , ( r i ) = I I [ 1 - R ( v ) ]  -'/2, R ( v ) = E  R ( k , v )  2Uri 
u k 

Let us transform the expression for the QPF to a form suitable for analysis. 
For this purpose one has to make the summation over the frequencies v in 
expression (48) for F~(ri). Now it is possible to represent the function F~(ri) 
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in the form 

{ ' ~ l n [ 1 - R ( v ) ] }  (49) F1(/3) = exp -~ 

Carrying out the expansion of the logarithm in the Taylor series [the 
expansion condition coincides exactly with condition (45) of the QPF 
convergence when b2 = 1 and ak = 0] and using relation (44), we obtain the 
following expression: 

= exp - ~  Z F,(jS) { 41v ka2(k)hk(~8)[1- �89  (50) 

c o  h~(/3)= E (-2U/3)"L,k(~) 
n = l  /'/ 

where the functions fn, k(fl) are defined by the recurrence relations 

1 _  th(fltkf 2 ) 
A.(/3) = ~ L  a2(kl)[A-l.k(/3) +f.-,.kl(/3)] 2/3(tk-- tk,)' f~.(/3) = 1 

The important consequence of the circumstance that our solution for 
the QPF was obtained exactly is in the fact that it contains as singularities 
the first-degree branch points, which cannot enter into the theory in 
which the summation of any Feynman diagram sequence of the geometric 
progression type is carried out. 

The QPF diverges in the region where condition (38) of the inclusion 
of the value under consideration into the interval (-1,  1] 

2 Ufl th(fltk/2) 
a 2 ( k )  1] (51) 

ihjSv - 2fltk C (--1, N 

is not fulfilled. This divergence is probably a consequence of the fact that 
the interaction Hamiltonian V2 in (6) of our problem is singular, as it 
describes the equal interaction between the Cooper pairs, which does not 
depend on distance. It is clear from expression (48) for F1(/3) that the 
reduced BCS model QPF can possess only a singularity on the real axis 
due to the central factor, corresponding to v = 0. The existence condition 
of this singularity gives an equation which defines a critical temperature T*: 

1 lim U ~  A2(k ) th(fl*~tk/2) 1, ~*~ = kT* (52) 
N~cC' N k tk 

Solving this equation by traditional methods (Bogolyubov, 1972), we obtain 
the following expression for the temperature T*: 

T~ = T D e -I/2A = (TDT, . )  I/2 (53)  
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On the other hand, it follows from condition (51) that for the conver- 
gence of  the QPF it is enough to demand the fulfillment of condition (51) 
only for v = 0. Hence, it is clear that the region of convergence of the 
reduced BCS model QPF in the nonregular phase is restricted from below 
by some critical temperature T*,  which is given by relation (53). Thus, the 
sense of  this temperature is that it is an indication of some temperature 
boundary to which one can work with the interaction Hamiltonian V2. 
Below T* the fluctuations in the system sharply increase and due to the 
equality of  the interactions between all Cooper  pairs, given by the Hamil- 
tonian V2, they result in the divergence of the QPF. 

For the regular phase (in the temperature limit T < To) in the thermody- 
namic limit the interaction Hamiltonian VL + V2 is equivalent to the so-called 
approximation Hamiltonian, which has the same form as I11 with a renormal- 
ized interaction constant (Bogolyubov, 1972). In this case the expression 
for the QPF coincides with result (46) and the critical temperature estimation 
with (47). The above definition of  T* has been obtained from the theory 
developed for the nonregular phase (in the temperature region T >  T*), 
when the four-fermion interaction Hamiltonian II2 cannot turn into an 
approximation Hamiltonian of the I11 type. Thus, if we treat the critical 
temperatures as the limit points up to which the exact solutions in the 
regular and nonregular phases exist, the estimations of  their values do not 
coincide and the inequality T * >  Tc always holds. In the intermediate 
temperature interval T~ < T < T* the fluctuations are so large that for the 
correct description of  our system in this interval it seems necessary to 
reconstruct the model Hamiltonian. 

From the methodological point of view developed for the QPF calcula- 
tion by the path integration method, it is interesting to deduce the QPF 
expression in the GCS-2 basis, which is given by relation (13). In this basis 
the action operator covariant symbol has the form 

A,, A,,(T) 
- l i m  E - -  ( 5 4 )  

h N . . . .  h 

Ac(~') 
= E {~*,/2(k, T) W(k, r)xIrc.i/2(k , ~') 

fi k 

+,I,*_,/~_(-k, ~-) W(-k,  ~-)+c_,/:(-k, ~-) 

+ Aflh (k)[Ar r)+A*(k, T)]} 

+ UJ~ k~l ~ ' N  k2 A(kl)A(k2)A,*. (k~, r)Ac(k2, T) 
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Carrying out now the calculations according to the scheme described in 
Section 2, one can deduce the following expression for the QPF in the 
thermodynamic limit: 

Z2(/3) = Z lim 1~ lim lira G(bl, b2) 
N ~  o9 b l ~ 0  b2~0 

• I-[ lim {( h/3w )2 + (/3tk) 2 + [~/3A (k)] 2 e -d/a%} 
k ak~0  

[ ( u/3 (55) x 1 - b 2 - ~ - ~ ( l + a k ) R  k , o ) -  7r 

As in the case of the QPF Z1 (/3) analysis, we discuss the Z2(/3 ) properties 
in two limiting cases. 

1. U = 0 .  In this case the action operator covariant symbol (55) 
coincides with action operator covariant symbol (19), which is found in the 
GCS-1 basis. It leads to the same results (46) and (47) in the regular phase 
for the QPF and critical temperature estimation. 

2. A=0.  In this case expression (55) transforms into the following 
result for the nonregular phase: 

Z2(/3)1~,=o = Sp e-13~'~ lim Sp e-~'oF2(fi) (56) 
N ~ o  

F2(/3) =I~ [ 1 -  R( ; ) /2 ]  1 

v 

which coincides with the result for the QPF obtained earlier by the path 
integration method for the same model with the Hamiltonian Ho+ V2 
(Popov, 1981). In the process of obtaining result (56) (Popov, 1981) the 
stationary phase approximation in the thermodynamic limit was used. From 
another point of view it is shown now that this solution (Popov, 1981) is 
the exact one in the thermodynamic limit if the GCS-2 basis (13) is used. 
Thus, in the path integration method developed for our problem the use of 
the reduced GCS-2 basis is apparently equivalent to the application of the 
stationary phase approximation in the thermodynamic limit. The QPF 
Z 2 ( / 3 ) [ A =  0 analysis gives that expression (56) converges in the temperature 
region T >  To, where Tc is given by relation (47). Hence, it is clear that in 
this case the critical temperature estimations both for the regular and 
nonregular phases coincide. As to the approximation Hamiltonian method 
(Bogolyubov, 1972) developed in the thermodynamic limit for the regular 
phase, it gives results which exactly coincide with the results obtained by 
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the path integration method for the regular phase in both the GCS-1 and 
GCS-2 bases. 

Summing up all these facts, one can conclude that the calculation 
results obtained by the path integration method for the QPF (and con- 
sequently for the other thermodynamic characteristics) depend on the choice 
of the GCS basis. The character of the QPF divergence changes (the branch 
point is substituted by the pole) and the critical temperature estimation is 
moved considerably in the nonregular phase. 

Thus, the choice of the GCS form becomes the principal question. 
From the theoretical point of view one ought to give preference to the 
GCS-1 basis, as just such coherent states satisfy all known demands, includ- 
ing the group-theoretic one (see Section 1). 

4. S O M E  REMARKS O N  THE NATURE OF THE 
ARBITRARINESS IN THE PATH INTEGRATION 
CAUSED BY THE GCS CHOICE 

The function F(/3), which describes the deviation of the QPF of the 
model with interaction from the QPF of the model without interaction, is, 
in essence, the S-matrix with the imaginary time parameter ir, where 
r ~ [0, hfl]. This circumstance allows us to investigate the differences in the 
QPF Z~(fl) and Z2(/3) from the S-matrix point of view. It is shown by 
Bogolyubov and Shirkov (1959) in the axiomatic approach to the quantum 
scattering theory that every term of the S-matrix expansion in the coupling 
constant (from the second one), contains an arbitrariness in the form of the 
integrals over the arbitrary quasilocal operators. In particular, just with the 
help of this arbitrariness it became possible to carry out the renormalization 
of the quantum electrodynamics by attaching quite definite, nontrivial 
expressions to these quasilocal operators (Bogolyubov and Shirkov, 1959). 

Treating the function F(/~) as the S-matrix with imaginary argument, 
one can apply the well-known S-matrix expansion in the coupling constant: 

F(f l  ) = 1 + F(')(,8 ) + F(2)(/3) +" �9 �9 (57) 

Io F("(fl)  = -  dz(V2(r))o (58) 

f; F(2)(fl) --~ drl dr2(T[V2(,,)V2(r2)])o 

+ f ~  drt f ~  , (59) 

T[ V2( r,) V2(r2)] = O( r, - r2) V2(r,) V2(r2) + O( r2 - r,) V2(r2) V2(r,) 

A2(r,, %) = n ( r , ,  r2)O(fl - r,)O(~ - %) 
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where V2('r) = eTH~ e -*"~ (" �9 ")0 = Sp(e -~"~ �9 ")/Sp e -~n~ and O(x) = 0 
if x <- O, O(x) = 1 if x > 0. Here A2(rl, r2)6('r~ - ~'2) is a quasilocal operator 
with an arbitrary function of two arguments R(~'~, r2). For the simplicity 
of the further analysis we concentrate our attention on the case when A = 0. 
One can obtain that 

u3 F {' t(/3) = - ~ - ~  ~ A 2(k)[ n~,+ (1 - nk) 2] (60) 

F<2)(]~) : 2 \ 2 N ]  E E [A(p)A (q)]2[n2p+ (1 - tip) ] I t /q+ (1 - nq) 2] 
P q 

+~ E E [A(p)A(q)] 2 p(1- nq )2 
p~q ~ ( t q -  tp) 

+ f~_ood'rl f~ d"r2 A2(Tl,'r2)6("rl-'r2) (61) 

The analogous expansions in the coupling constant U 3 of the functions 
1=1(3) and F2(/3) obtained by the path integration method with the use of 
the GCS-1 and GCS-2 bases accordingly leads as expected, to nonequal 
results, which differ from each other in the terms proportional to the (U[3) 2. 
Attaching to the arbitrary function R(r~, ~'2) the following meaning, 

= (  U[3] e [A(P)A(q)]  2 
EE R2(T~, r2) \ 2 N /  p~q f l ( tq-  tp) 

x e2~"q[tq(e~2'"+ 1)+ tp e*2',(e~,',+ 1)] (62) 
( e " q +  1)3(e~2',+ 1) 3 

one can restore, with the help of formula (61), the expansion of the function 
FI (13) with an accuracy up to the ( U3)2 terms. For the analogous restoration 
of the function F2(3) it is enough to set down in expression (61) that 
R2(r~, r2) = 0. It should be noted (Izmailov and Kessel, 1989a-c) this fact 
was not indicated in the process of agreement of the expressions for QPF 
Z1(/3) and Z2(/3) with the perturbation theory. In these papers we took the 
S-matrix expansion within the axiomatic theory as the stationary perturba- 
tion theory with O(x) = 0 if x < 0, 1/2 if x = 0, and 1 if x > 0, and R2(zl, ~'2) = 
0. As was shown above, the application of the 0 function defined by 
expression (59) leads to the same conclusions if the perturbation theory 
with the quasilocal operator in the form (59) and (62) is used. 

Thus, these discussions reveal that the arbitrariness in the path integral 
calculations connected with the use of the different GCS bases apparently 
does not exceed the bounds of the arbitrariness which exists due to the 
arbitrary quasilocal operators in the S-matrix axiomatic theory. The appear- 
ance of the arbitrary quasilocal operators in the theory is deeply rooted: 
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the Schr6dinger quantum mechanical picture is based on the solution of 
differential equations and so contains the arbitrariness in the integration 
constants (Bogolyubov and Shirkov, 1959). 
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